1,943 research outputs found

    Computing Real Roots of Real Polynomials ... and now For Real!

    Full text link
    Very recent work introduces an asymptotically fast subdivision algorithm, denoted ANewDsc, for isolating the real roots of a univariate real polynomial. The method combines Descartes' Rule of Signs to test intervals for the existence of roots, Newton iteration to speed up convergence against clusters of roots, and approximate computation to decrease the required precision. It achieves record bounds on the worst-case complexity for the considered problem, matching the complexity of Pan's method for computing all complex roots and improving upon the complexity of other subdivision methods by several magnitudes. In the article at hand, we report on an implementation of ANewDsc on top of the RS root isolator. RS is a highly efficient realization of the classical Descartes method and currently serves as the default real root solver in Maple. We describe crucial design changes within ANewDsc and RS that led to a high-performance implementation without harming the theoretical complexity of the underlying algorithm. With an excerpt of our extensive collection of benchmarks, available online at http://anewdsc.mpi-inf.mpg.de/, we illustrate that the theoretical gain in performance of ANewDsc over other subdivision methods also transfers into practice. These experiments also show that our new implementation outperforms both RS and mature competitors by magnitudes for notoriously hard instances with clustered roots. For all other instances, we avoid almost any overhead by integrating additional optimizations and heuristics.Comment: Accepted for presentation at the 41st International Symposium on Symbolic and Algebraic Computation (ISSAC), July 19--22, 2016, Waterloo, Ontario, Canad

    On the Complexity of Computing with Planar Algebraic Curves

    Full text link
    In this paper, we give improved bounds for the computational complexity of computing with planar algebraic curves. More specifically, for arbitrary coprime polynomials ff, gZ[x,y]g \in \mathbb{Z}[x,y] and an arbitrary polynomial hZ[x,y]h \in \mathbb{Z}[x,y], each of total degree less than nn and with integer coefficients of absolute value less than 2τ2^\tau, we show that each of the following problems can be solved in a deterministic way with a number of bit operations bounded by O~(n6+n5τ)\tilde{O}(n^6+n^5\tau), where we ignore polylogarithmic factors in nn and τ\tau: (1) The computation of isolating regions in C2\mathbb{C}^2 for all complex solutions of the system f=g=0f = g = 0, (2) the computation of a separating form for the solutions of f=g=0f = g = 0, (3) the computation of the sign of hh at all real valued solutions of f=g=0f = g = 0, and (4) the computation of the topology of the planar algebraic curve C\mathcal{C} defined as the real valued vanishing set of the polynomial ff. Our bound improves upon the best currently known bounds for the first three problems by a factor of n2n^2 or more and closes the gap to the state-of-the-art randomized complexity for the last problem.Comment: 41 pages, 1 figur

    Exact Symbolic-Numeric Computation of Planar Algebraic Curves

    Full text link
    We present a novel certified and complete algorithm to compute arrangements of real planar algebraic curves. It provides a geometric-topological analysis of the decomposition of the plane induced by a finite number of algebraic curves in terms of a cylindrical algebraic decomposition. From a high-level perspective, the overall method splits into two main subroutines, namely an algorithm denoted Bisolve to isolate the real solutions of a zero-dimensional bivariate system, and an algorithm denoted GeoTop to analyze a single algebraic curve. Compared to existing approaches based on elimination techniques, we considerably improve the corresponding lifting steps in both subroutines. As a result, generic position of the input system is never assumed, and thus our algorithm never demands for any change of coordinates. In addition, we significantly limit the types of involved exact operations, that is, we only use resultant and gcd computations as purely symbolic operations. The latter results are achieved by combining techniques from different fields such as (modular) symbolic computation, numerical analysis and algebraic geometry. We have implemented our algorithms as prototypical contributions to the C++-project CGAL. They exploit graphics hardware to expedite the symbolic computations. We have also compared our implementation with the current reference implementations, that is, LGP and Maple's Isolate for polynomial system solving, and CGAL's bivariate algebraic kernel for analyses and arrangement computations of algebraic curves. For various series of challenging instances, our exhaustive experiments show that the new implementations outperform the existing ones.Comment: 46 pages, 4 figures, submitted to Special Issue of TCS on SNC 2011. arXiv admin note: substantial text overlap with arXiv:1010.1386 and arXiv:1103.469

    Experimental Tests of Asymptotic Freedom

    Full text link
    Measurements which probe the energy dependence of αs\alpha_s, the coupling strength of the strong interaction, are reviewed. Jet counting in e+ee^+ e^- annihilation, combining results obtained in the centre of mass energy range from 22 to 133 GeV, provides direct evidence for an asymptotically free coupling, without the need to determine explicit values of αs\alpha_s. Recent results from jet production in epe p and in ppp \overline{p} collisions, obtained in single experiments spanning large ranges of momentum transfer, Q2Q^2, are in good agreement with the running of αs\alpha_s as predicted by QCD. Mass spectra of hadronic decays of τ\tau-leptons are analysed to probe the running αs\alpha_s in the very low energy domain, 0.7GeV2<Q2<Mτ20.7 GeV^2 < Q^2 < M_\tau^2. An update of the world summary of measurements of αs(Q2)\alpha_s(Q^2) consistently proves the energy dependence of αs\alpha_s and results in a combined average of αs(MZ)=0.118±0.006\alpha_s(M_Z) = 0.118 \pm 0.006.Comment: 11 pages, 8 Figures, LaTeX. To appear in Proc. of QCD Euroconference 96 at Montpellier, France, July 199

    Measurement of Rb in e+e- Collisions at 182 - 209 GeV

    Full text link
    Measurements of Rb, the ratio of the bbbar cross-section to the qqbar cross- section in e+e- collisions, are presented. The data were collected by the OPAL experiment at LEP at centre-of-mass energies between 182 GeV and 209 GeV. Lepton, lifetime and event shape information is used to tag events containing b quarks with high efficiency. The data are compatible with the Standard Model expectation. The mean ratio of the eight measurements reported here to the Standard Model prediction is 1.055+-0.031+-0.037, where the first error is statistical and the second systematic.Comment: 21 pages, 5 figures, Submitted to Phys. Letts

    Measurement of the partial widths of the Z into up- and down-type quarks

    Full text link
    Using the entire OPAL LEP1 on-peak Z hadronic decay sample, Z -> qbarq gamma decays were selected by tagging hadronic final states with isolated photon candidates in the electromagnetic calorimeter. Combining the measured rates of Z -> qbarq gamma decays with the total rate of hadronic Z decays permits the simultaneous determination of the widths of the Z into up- and down-type quarks. The values obtained, with total errors, were Gamma u = 300 ^{+19}_{-18} MeV and Gamma d = 381 ^{+12}_{-12} MeV. The results are in good agreement with the Standard Model expectation.Comment: 22 pages, 5 figures, Submitted to Phys. Letts.

    Genuine Correlations of Like-Sign Particles in Hadronic Z0 Decays

    Get PDF
    Correlations among hadrons with the same electric charge produced in Z0 decays are studied using the high statistics data collected from 1991 through 1995 with the OPAL detector at LEP. Normalized factorial cumulants up to fourth order are used to measure genuine particle correlations as a function of the size of phase space domains in rapidity, azimuthal angle and transverse momentum. Both all-charge and like-sign particle combinations show strong positive genuine correlations. One-dimensional cumulants initially increase rapidly with decreasing size of the phase space cells but saturate quickly. In contrast, cumulants in two- and three-dimensional domains continue to increase. The strong rise of the cumulants for all-charge multiplets is increasingly driven by that of like-sign multiplets. This points to the likely influence of Bose-Einstein correlations. Some of the recently proposed algorithms to simulate Bose-Einstein effects, implemented in the Monte Carlo model PYTHIA, are found to reproduce reasonably well the measured second- and higher-order correlations between particles with the same charge as well as those in all-charge particle multiplets.Comment: 26 pages, 6 figures, Submitted to Phys. Lett.

    WW Production Cross Section and W Branching Fractions in e+e- Collisions at 189 GeV

    Get PDF
    From a data sample of 183 pb^-1 recorded at a center-of-mass energy of roots = 189 GeV with the OPAL detector at LEP, 3068 W-pair candidate events are selected. Assuming Standard Model W boson decay branching fractions, the W-pair production cross section is measured to be sigmaWW = 16.30 +- 0.34(stat.) +- 0.18(syst.) pb. When combined with previous OPAL measurements, the W boson branching fraction to hadrons is determined to be 68.32 +- 0.61(stat.) +- 0.28(syst.) % assuming lepton universality. These results are consistent with Standard Model expectations.Comment: 22 pages, 5 figures, submitted to Phys. Lett.
    corecore